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ABSTRACT: One promising frontier for synthetic biology is
the development of synthetic ecologies, whereby interacting
species form an additional layer of connectivity for engineered
gene circuits. Toward this goal, an important step is to
understand different types of bacterial interactions in natural
settings, among which competition is the most prevalent. By
constructing a two-species population dynamics model, here,
we mimicked bacterial growth in nature with resource-limited
fluctuating environments and searched for optimal strategies
for bacterial exploitative competition. In a simple game with two strategy options (constant or susceptible growth), we found that
the species playing the constant growth strategy always outplays or is evenly matched with its competitor, suggesting that
constant growth is a “no-loss” good bet. We also showed that adoption of sophisticated strategies enables a species to maximize
its fitness when its competitor grows susceptibly. The pursuit of fitness maximization is, however, associated with potential loss if
both species are capable of strategy adjustment, indicating an intrinsic risk-return trade-off. These findings offer new insights into
bacterial competition and may also facilitate the engineering of microbial consortia for synthetic biology applications.
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Rapid advances in synthetic biology have illustrated both its
power in fostering new understanding of biology and its
potential for real world applications.1−3 Over the past decade, a
large set of functional engineered gene circuits have been
successfully created,4−9 among which most have been
constructed for single cellular species. Recently, interest has
also emerged in engineering microbial consortia,10 such as
predator−prey ecosystems,11 intra- and inter- species king-
doms,12 and yeast cooperation populations.13 The construction
of microbial consortia is a natural solution for creating more
sophisticated cellular functions as species communities are
often robust to environmental fluctuations and versatile for
function programming.10 However, due to the intrinsic
complexity of microbial communities, consortia engineering is
also more challenging compared with circuits for single cellular
species. To facilitate the construction of synthetic microbial
consortia, a deeper understanding of how natural bacterial
species interact is thus instrumental.
Bacteria are single cell organisms but are present dominantly

in nature with the form of complex communities, such as
biofilms and the microbiome.14−17 As one of the major
domains of life on earth, they exist in diverse habitats including
soil, water, organic matter, and the live bodies of plants and
animals.18,19 Due to the limited resources provided by these

natural environments, bacteria face constant battles within
communities.
The understanding of bacterial competition has been a focal

point for biologists.20,21 Started by illustrating the relationship
between limiting nutrients and bacterial growth,22,23 the field
has advanced significantly over the decades through the
discovery of fundamental competition principles,20,24,25 explo-
ration of basic dynamics between competing organisms,26−30

investigation of representative game scenarios,31−33 and
examination of contributing factors such as spatial hetero-
geneity34,35 and cellular communication.12 In order to acquire
limited resources, bacteria may compete with their neighbors
via various direct or indirect fashions,20,21,36 among which
exploitative competition is one of the main forms. In
exploitative competition, one species either more efficiently
uses or reduces a shared resource, thus depleting the availability
of the resource for others.23,37

Recent studies have discovered that bacteria may be capable
of playing sophisticated exploitative strategies during battles to
maximize their gain.38,39 For instance, bacteria can use a version
of “prisoner’s dilemma” through chemical communication to
consider their options and decide on a course of action when

Received: December 4, 2013
Published: March 17, 2014

Research Article

pubs.acs.org/synthbio

© 2014 American Chemical Society 240 DOI: 10.1021/sb4002008
ACS Synth. Biol. 2015, 4, 240−248

pubs.acs.org/synthbio
http://dx.doi.org/10.1021/sb4002008


faced with life-or-death situations,40 adopt the time delay effect
of quorum sensing to provide an advantageous strategy to
regulate their costly but beneficial public goods,41 and play a
resource self-reservation strategy to outperform ‘cheater cells’ in
a snowdirft game.33

In addition to resource restrictions, natural environments are
often subject to periodic or irregular fluctuations, including
variations of nutrient, temperature, pH, and toxin that are all
critical to cellular physiology and hence population
growth.42−44 Bacteria, therefore, survive in complex situations
where they interact with each other, compete among species,
and are simultaneously subject to external environmental
fluctuations.
Previous studies have considered the effects of fluctuations

and limited resources on phenotypic switching and fitness
maximization for a microbial species.42,43,45−48 Here, we focus
on the impact of fluctuating, resource-limited environments on
competition between species that can alter their respective
growth rates through environmental cues. Specifically, we
address the question: How can individual species play
exploitative competition strategies to outplay others in such
natural environments? Although population dynamics has been
a classical topic in evolution,49,50 systematic understanding of
this question, particularly in the context of bacterial strategic
games, has remained obscure.
In order to address the question from a quantitative,

systematic, and integrative strategic game perspective, we
construct a two-species population dynamics model to mimic
bacterial competitive growth in resource limited, fluctuating
environments and employ it to search for optimal exploitative
competition strategies. We first consider two simple strategies:
constant growth (environment-insensitive) and susceptibleness
(environment-dependent growth), and analyze the outcome of
exploitative competition in different strategic scenarios. We
then explore optimal strategies that maximize species’ fitness
and discuss the inherent risk−return trade-off associated with
optimization. We conclude by summarizing our findings and
discussing their biomedical implications.

■ RESULTS AND DISCUSSION
Simple Strategies for Exploitative Competition in a

Bacterial Community. We began our exploration of bacterial
competition strategies by considering a two-species community,
as shown in Figure 1A. Here, the species A and C are supplied
with a shared limited nutrition source, and thereby, their
proliferations follow a logistic growth fashion.51 The two
species also die over time obeying first-order chemical kinetics.
In addition, they are mutually switchable, representing a

common cellular interaction form. Examples of such a cellular
interaction include genotypic transitions, such as gene island
excision and integration in N. gonorrheae52 and f imBE-
controlled DNA inversion in E. coli,53 as well as phenotypic
switching, such as the formation of bacterial persistence54 and
bistable transitions in natural and synthetic gene circuits.4,55,56

Thus, the two species are not required to have different
genomes. The detailed biochemical description of the cellular
events of this model is presented in Figure 1B.
The population dynamics of this competing community can

be described through the following set of coupled differential
equations:
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where t is time, A and C are the population numbers of the
species A and C, αA and αC are their maximal growth rates, k1
and k2 correspond to the rates of transitions between the
species, and γA and γC are the death rates. In addition, N0 refers
to the carrying capacity of the community constrained by
nutrient limitation, and the first terms on the right hand side of
the equations represent the logistic growth of each species. A
special case of this model, k1 = k2 = 0, corresponds to the
classical competitive Lotka−Volterra equations.57,58
Under a static environment where all rates remain constant,

the community always achieves a final steady state regardless of
its initial condition: the two species are equally represented
when all of their rates are identical but the species with a larger
growth rate dominates when their rate constants are different
(see details in Supporting Information (SI) section 1).
However, the community structure can become sophisticated

in realistic cellular niches where environments fluctuate. This is
because environmental fluctuations are typically associated with
the variation of nutrient, toxin, temperature, and other factors
that are critical to cellular growth and survival.59 To mimic such
environments, we assumed the community is subject to two
environments, say E1 and E2, that alternate with an equal
duration time T/2 in each environment.
How can one bacterial species play strategies to outcompete

the other in such environments? The simplest strategies that
cells can play would include environment-susceptible growth,
where the growth rate oscillates with changing environments,
and, alternatively, constant growth, where the growth rate is
independent of environmental perturbations, as shown in
Figure 2A. This naturally leads to another question: Which
strategy is better between susceptibleness and constant growth?
To answer this question, we described these two strategies

with a mathematical formulation. Specifically, we assume the
growth rate of a species adopting the susceptibleness strategy
has an expression as

α α= + Δ·Φt t( ) (1 ( ))o (2)

where t is time, αo is the growth coefficient, Δ ∈ [0,1] is the
amplitude of growth rate fluctuation (GRF), and Φ(t) is a unit
periodic square function reflecting the environmental depend-
ence of growth: Φ(t) = 1 in environment E1 (0 ≤ [t/T] < T/2)
and Φ(t) = −1 in environment E2 (T/2 ≤ [t/T] < T), where T
is the period of environmental fluctuations and [t/T] is the

Figure 1. Bacterial community model. (A) Schematic of cellular events
occurring within the community. The species A (orange) and C (blue)
are both capable of proliferation, apoptosis, and interspecies transition.
(B) Kinetic representation of cellular events illustrated in part A. The
two species have a growth rate of αA(1 − (A + C)/N0) and αC(1 − (A
+ C)/N0), a death rate of γA and γC, and a transition rate of k1 and k2,
respectively. N0 is the carrying capacity of the community.
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residue of t/T. The mean cellular growth rate (α t( )) is hence
equal to αo. In contrast, the growth rate of the cellular species
adopting the constant strategy remains unchanged despite
environmental fluctuations, that is,

α α=t( ) o (3)

where αo is a constant identical to the αo in eq 2. These two
strategies therefore have the same mean growth rate but
different cellular responses to environmental fluctuations. In
addition, the death and transition rates of the species are
assumed environment-independent and symmetrical for
simplicity, that is, γA = γC = γ and k1 = k2 = k.
As each of the species has the option to play either of the two

strategies, there are a total of four possible strategic scenarios
for our two-species community (A, C):

(1) (constant growth, constant growth),
(2) (constant growth, susceptibleness),
(3) (susceptibleness, constant growth), and
(4) (susceptibleness, susceptibleness),

among which the species have equal fitness for both case 1 and
case 4 due to the symmetrical structure of the community
where reactions rates and responses to external environments

are all identical (See SI section 2). In addition, cases 2 and 3
have equivalent dynamics under interchange of the bacterial
species; thus, we need only consider case 3.
To evaluate the merit of the competition strategies, we

employed species fitness as our metric, which is mathematically
defined as the relative abundance of cell populations,60 that is, fa
= A/(A + C) and fc = C/(A + C).
For case 3, we assigned species A and C with a growth

coefficient in the form of eqs 2 and 3, respectively, and then
integrated the community model eq 1 computationally. Figure
2B shows the representative time evolution of cellular
populations where fluctuating environments are activated at t
= 1.0 × 103. The corresponding fitness is obtained in Figure 2C
with the blue and black lines corresponding to the temporal
and averaged fitness of species C. Interestingly, we found that
the mean fitness is higher than 0.5 when the community
populations are at steady oscillations, regardless of the
community’s initial conditions (See SI section 8), suggesting
that constant C outperforms susceptible A although they have
an identical mean growth rate.
To systematically examine this finding, we performed a set of

in silico competition assays for different environmental
fluctuation periods. We found that, for the entire spectrum
we explored, the mean fitness fc̅ is always larger than 0.5 (Figure
2D) although it depends on fluctuation period and may have a
maximum at a finite period in certain parameter settings. In

contrast, the variance of the fitness fc
2−fc̅2 increases monotoni-

cally with period and achieves a plateau in the long period limit
(Figure 2E).
To identify the conditions under which a maximal mean

fitness arises at a finite period, we proceeded to conduct a wide
spectrum of in silico competition experiments by varying the
GRF amplitude of species A (ΔA) and the transition rate (k).
We chose these two parameters because the former reflects the
strength of growth response to environmental fluctuations and
the latter is strongly associated with interspecies flow. Figure 3A
shows the maximal mean fitness of species C with respect to ΔA

and k within the period spectrum (0,2000] we scanned. Figure
3B is the corresponding characteristic environmental fluctua-
tion period at which C’s maximal fitness is achieved. Clearly,
the characteristic period has a phase separation with the
existence of a maximal fitness at a finite period in the blue
region.
All of our assays converge to the same conclusion that

species C outperforms species A in case 3 where C has constant
growth and A is susceptible. From a strategic game perspective,
this result, along with the equivalence between case 2 and case
3 and the even match of the species in both case 1 and case 4
where they employ the same strategies, suggests that constant
growth is a “no-loss” good strategy for competition.
Furthermore, in certain circumstances, the constant growth
strategy can enable a species to dominate the community even
though its average growth rate is smaller than its competitor
(see SI section 9), suggesting that the constant growth species,
which is “slow and steady”, can win even in unfair competitions.

Analytical Investigation of Competition: Constant
Growth versus Susceptibleness. To determine if our
finding that constant growth is a good strategy holds true in
general regardless of parameter settings, we pursued an
analytical analysis of the strategic game (case 3) through a
perturbation expansion (detailed in SI sections 2−6).

Figure 2. Simple strategies for exploitative competition in resource-
limited fluctuating environments. (A) Two strategies for coping with
changing environments: susceptibleness strategy (left) where cellular
growth depends on the environment and constant growth strategy
(right). (B) Representative population dynamics of cellular species in
the competition case 3 where the species A and C adopt the
susceptibleness and constant growth strategy, respectively. Cellular
environments are switched from a constant environment to a
fluctuating environment at t = 1.0 × 103. (C) The fitness of species
C fc in the competition case 3. The temporal fitness (blue line) has a
periodic variation but its average over single periods gives rise to a
well-defined mean fitness (black line) and variance (gray shading). (D,
E) The period dependence of the mean and variance of species C’s
fitness. The mean (D) may have a bell-like or sigmoidal shape
depending on the parameters, while the variance (E) increases
monotonically with the period. The corresponding parameters are
given in SI section 7.
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We first rewrote the community dynamics model eq 1 in
terms of the variables X = A + C and Y = A − C as
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where X is total cell population and Y is population difference.
As the GRF amplitude Δ ∈ [0,1], we proposed an

asymptotic expansion in the long time limit in terms of Δ by
plugging in X and Y as X = X0 + ΔX1 + Δ2X2 +... and Y = Y0 +
ΔY1 + Δ2Y2 +.... By collecting terms according to the order of
Δ, we found that the equations satisfied by X0 and Y0 have exact
solutions with a well-defined long time limit while the
remaining orders (Xi and Yi, i ≥ 1) in the perturbation
expansion have the following form:

α γ
=

− −

−
+

Φ

Φ

⎛
⎝⎜⎜

⎞
⎠⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜⎜

⎞
⎠⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟t

X

Y k

X

Y

g

h
d
d

( ) 0

0 2

( )

( )

i

i

i

i (5)

where g(Φ) and h(Φ) are functions that depend on lower
orders of the perturbation series. Notice that the solution to the
homogeneous differential equation for every order decays to
zero in the long time limit; therefore, we only need to pursue a
specific solution based upon the form of Φ. For the case of the
unit periodic square function (our model), Φ can be
represented as an infinite sum over sines and cosines.
Accordingly, the perturbations terms also take the form of
sines and cosines with coefficients to be determined by the
specific form of g and h.
By determining the first and second order corrections to X

and Y, we have an expression for the average fitness of species
C as
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Here, the first order term averages to zero (See SI sections 3−
4), but the second order term yields the first nonzero
contribution to fitness, leading to the final result
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As all values of α, γ, k, Δ, T, and n are nonnegative, the second
term of eq 7 is nonnegative definite, suggesting that the fitness
fc has a value equal or larger than 0.5 always. This result hence
demonstrates that the constant growth strategy is a no-loss
good strategy to the order of Δ2.
It is worthy of notice that the above conclusion holds true for

any periodic, zero-mean fluctuating environment (i.e., not
limited to square wave-like fluctuating environments). This is
because any periodic signal is essentially a superposition of a set
of sine and cosine functions (Fourier series), and every sine and
cosine function contributes positively to the overall fitness (See
SI section 5 for details).
In addition to supporting the main finding, our analytical

calculation also enables us to explore secondary features
associated with higher orders of Δ in the expansion, including
the period dependence of the average fitness. By extending the
serial expansion of Δ to the fourth order, we can determine the
fitness as
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where a normalized, first order approximation to the square
function is used (see SI section 3).
As the fitness maximum occurs when the derivative of fc̅ with

respect to the period T equals zero, we can search for the
existence of a maximum by finding the characteristic period,
which is equivalent to solving for the roots of a polynomial
equation in T (see SI section 4). Our calculation gives rise to a
boundary (orange line in Figure 3B) that separates the maximal
fitness into two regimes: The fitness achieves a maximum at a
finite value of T below the boundary; above the boundary, the
maximum occurs at T → ∞. Furthermore, we plotted a

Figure 3. Maximal mean fitness of species C in case 3 competition
where A and C adopt the susceptibleness and constant growth strategy
correspondingly. (A) Maximal mean fitness with respect to the GRF
amplitude ΔA and transition rate k. (B) The characteristic period of
environment fluctuations at which C’s mean fitness achieves a
maximum. The plot shows two distinct domains with the white
domain corresponding to a characteristic period of 2000 (maximal
numerically screened period) and the blue domain corresponding to a
period of a few hundreds. The orange line is the phase boundary
derived from analytical calculation using an approximation to the unit
periodic square function, and the two dots (M and O) are
representative cases of the two phases. (C−D). Comparisons for the
case of ΔA = 0.3 and k = 0.003 (C) and the case of ΔA = 0.3 and k =
0.03 (D), corresponding to the dots O and M in panel B, respectively.
The green and gray lines are the results from analytical calculation and
numerical simulation accordingly.
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comparison of the analytical and computational results with
given sets of k and Δ in Figure 3C−D, showing qualitative
agreement in the period dependence of maximal fitness.
Searching for Optimal Competition Strategies. Both

our analytical calculations and computational simulations have
shown that constant growth is a good competition strategy in
coping with changing environments. But, is constant growth the
optimal strategy?
To answer this question, we conducted a systematic survey of

more sophisticated competition strategies by enabling the
species to respond differently to fluctuating environments and
evaluating how the modulations of growth parameters impact
the outcome of competition. Mathematically, this can be
implemented by assigning the growth of both species (A and
C) with a generalized form of susceptible growth (eq 2), that is,
αs(t) = α0(1 + ΔsΦs(t)) (s = A or C) but allowing their
coefficients to be tunable. Here, Δs is the GRF amplitude of the
species s, and Φs(t) is the corresponding unit growth
fluctuation function that has a periodic expression as
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where Ts is the period of growth fluctuation, ϕs is its initial
phase, and the bracket “[•]” refers to the residue of the term
“•”.
To search for optimal competition strategies, we examined

the mean fitness of species C ( fc̅) by systematically altering the
amplitudes (ΔA, ΔC), phases (ϕA, ϕC), and periods (TA, TC), as
illustrated in Figure 4A accordingly. We chose to examine the
role of amplitude modifications due to the fact that biological
organisms and their underlying genetic networks have often
evolved to generate appropriate cellular response amplitudes
for coping with fluctuating environmental stimuli such as
nutrients, pH value, and temperature.44,61 In addition,
architectural features of signaling and genetic regulatory
networks, such as cascade size, can influence the time needed
for detection and propagation of an external signal, resulting in
variable phase lags in response to environments.62 Thus, we
were motivated to examine how the adjustment of phase lag
would affect competition outcomes. To give a complete picture
of competition strategies, we also considered tuning the period
of the response for environmental fluctuations, although this is
less biologically applicable.
Figure 4B shows C’s mean fitness profile with respect to the

GRF amplitudes of the two species. This profile has a contour
of fc̅ = 0.5 along the diagonal (ΔA = ΔC), suggesting a neutral
competition under this situation. This corresponds to case 4 in
the simple competitions discussed earlier and the equal fitness
arises from the identity of the two competing species in terms
of their growth, death and transition rates. The symmetry
argument also holds true at the origin (ΔA = ΔC = 0)
corresponding to case 1 where both species employ the
constant growth strategy. In addition, the lower horizontal
borderline (ΔA = 0) and the left vertical borderline (ΔC = 0)
represent case 2 (constant growth, susceptibleness) and case 3
(susceptibleness, constant growth) in the simple competitions
accordingly. Moreover, the fitness landscape is split by the line
(ΔA = ΔC) into two domains with the one above the diagonal

having a fitness higher than 0.5 and the one below having a
fitness lower than 0.5, leading to the conclusion that the species
with a smaller GRF amplitude always wins in the competing
community.
Figure 4C illustrates the horizontal cross sections of the

mean fitness landscape at different GRF amplitudes of the
species A (ΔA). Interestingly, C’s mean fitness is not necessarily
a monotonically decreasing function of its GRF amplitude (ΔC)
but instead could increase for a given GRF amplitude of the
species A. For example, the fitness at ΔC = 0.5 (pink square) is
higher than the fitness at ΔC = 0 (yellow square) for the case of
ΔA = 0.9. This suggests that, adoption of susceptible growth
with an appropriately chosen GRF amplitude may confer a
fitness higher than that of constant growth (ΔC = 0). This also
means that, although the constant growth strategy is a “no-loss”
good strategy, it may not be optimal. Instead, an adapted

Figure 4. Searching for optimal competition strategies. (A) Three
possible strategies for optimizing competition: fine-tuning of the
amplitude, phase lag, and period of growth rate fluctuations (GRF).
(B) The mean fitness fc̅ as a function of the GRF amplitudes ΔA and
ΔC. (C) Horizontal cross sections of panel B at different values of A’s
GRF amplitude. The nonmonotonic dependence of the fitness
indicates that the species C can optimize its gain with appropriate
tuning of its GRF amplitude. (D) The mean fitness fc̅ with respect to
the phase lag ϕC − ϕA. (E) Horizontal cross sections of panel D at
different amplitudes. The species C has an elevated fitness when the
phase lag is within (π,2π). (F) The mean fitness fc̅ as a function of the
ratio of the periods (TC/TA). (G) Horizontal cross sections of panel F
at different common amplitudes. Parameters are detailed in SI section
7.
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version of the susceptibleness strategy may produce an
augmented fitness.
In addition to GRF amplitudes, GRF phases can also impact

the species’ fitness. As depicted in Figure 4D, the mean fitness
( fc̅) varies significantly as the phase lag (the difference of the
phases, i.e., ϕC − ϕA) changes, although the GRF amplitudes of
both species remain the same. However, the fitness ( fc̅) remains
at 0.5 for ϕ/2π = 0,0.5,and 1 despite their GRF amplitudes.
The evenness of the fitness at ϕ/2π = 0 and ϕ/2π = 1 comes
from the complete symmetry of the competition while the
evenness at ϕ/2π = 0.5 is due to the fact that the two species’
strategies are opposite in phase and the average of the fitness
over a period results in a symmetrical structure as well. In
addition, the line ϕ/2π = 0.5 serves as a separatrix that divides
the fitness landscape into two domains: A fitness lower than 0.5
in the left domain and higher than 0.5 in the right, suggesting
that a winning strategy needs to have a phase lag within (π,2π).
The profile of the landscape further suggests that, for a given
amplitude, the fitness can be potentially maximized: it can be
augmented considerably with appropriate fine-tuning of the
phase lag (e.g., ϕ/2π ≃ 0.93 for the case of ΔA = ΔC = 0.9) as
shown in Figure 4E.
Moreover, GRF periods (frequencies) also affect compet-

itions. Figure 4F, G shows the species C’s fitness with respect to
the ratio of the periods (TC/TA). As the magnitude of
population number fluctuations decreases with GRF period and
diminishes when the period approaches zero, the boarder line
(TC/TA = 0) corresponds effectively to the case of constant
growth of species C. As the modulation of GRF period
generally reduces the species’ fitness (Figure 4G) and both of
the left border lines of Figure 4B and Figure 4F correspond to
case 3 (susceptibleness, constant growth) in the simple
competitions, comparison of the two panels suggests that
modulation of GRF amplitude, rather than period, is favored for
strategy optimization.
Risk Association of Fitness-Maximized Strategies. Our

survey has shown that, compared with the simple constant
growth strategy, an increased fitness may be conferred by
sophisticated strategies through appropriate GRF modulation.
On the other hand, it is widely acknowledged in social and
economic sciences that maximal gain is often associated with
increased risk. The similarity of bacterial competition with
social and economic settings naturally leads us to ask another
question: Is there any potential risk associated with greed (f itness
maximization) of bacteria in competition?
To answer this question, we revisited the optimal

competition strategies explored in Figure 4. Clearly, appropriate
modulation of GRF factors, such as amplitude and phase, can
give rise to a fitness higher than that from the constant growth
strategy; however, arbitrary strategy adjustment does not
necessarily aid in the increase of fitness. Indeed, the species
C’s mean fitness is lower than 0.5 in half of the GRF amplitude
space (the half below the diagonal of Figure 4B) as well as half
of the phase lag space (the (0,π) domain of Figure 4D). This
suggests potential loss during maximization: the fitness of a
species employing sophisticated strategies can be lower than
the ‘safe bet’ (constant growth strategy) if its GRF is not
correctly tuned.
The risk of potential loss can be exemplified in situations

where both competing species are capable of sensing each
other’s strategy and adjusting their own, particularly when the
response time required for GRF modulation is species
dependent. To illustrate this idea, we considered a simple

competition scenario where species A and C are employing the
susceptibleness (ΔA = 0.9) and constant growth (ΔC = 0.0)
strategies respectively (Figure 5A, light green window) but A

has a much shorter response time than C. In this case, C
outperforms with a mean fitness of 0.70 (Figure 5B). If C
pursues a maximal gain by turning its strategy into sophisticated
susceptibleness with a GRF amplitude of ΔC = 0.6, its fitness
can be elevated to 0.81 accordingly (light blue window).
However, because of its short response time, species A can
quickly adjust its own strategy by using a smaller GRF
amplitude (ΔA is tuned from 0.6 down to 0.27), which will
cause a fitness loss for species C ( fc̅ = 0.29) in a long time run
(light orange window).
This example illustrates that optimal strategies that maximize

species fitness are associated with potential loss. Conversely,
the constant growth strategy has a lower fitness gain but no risk
for loss. These facts collectively reveal an intrinsic high risk-high
return relationship in bacterial strategic games and also suggest
the need for rational balance between gain maximization and
risk minimization during competition.
To explore a more realistic dynamic population competition,

we simulated a two-species competition game with each strain
having an equal capability for adaptive strategy adjustment. For
simplicity, we assumed that both species have two adaptive
strategy options: increasing amplitude by 0.05 or decreasing
amplitude by 0.05. In addition, at the end of every single
period, both species can adjust their strategies depending on
their fitness: a species adopts the same strategy as in the
previous period if its fitness increases through the previous
period; otherwise, the opposite strategy is adopted. Interest-
ingly, our simulations (SI section 10) show that the fitness for

Figure 5. Possible loss during the pursuit of maximal fitness. (A)
Dynamic strategy adjustments via GRF amplitude modulation in a
competition where both species are capable of sensing each other’s
strategy and adjusting their own. (B) Corresponding temporal (brown
line) and mean (black line) fitness of species C. During a game started
with species A being susceptible and C utilizing constant growth (ΔA =
0.9, ΔC = 0) (light green window), species C can further increase its
mean fitness from 0.70 to 0.81 by adjusting its strategy from constant
growth to susceptibleness with a GRF amplitude of 0.6 (light blue
window). C’s pursuit of maximal fitness, however, may lead to its loss
if the competing species A is able to quickly adjust its own GRF
amplitude to 0.27 after sensing the strategic change of C (light orange
window), resulting in a mean fitness of 0.29 for species C.
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both species approaches 0.5 over time, suggesting an
equilibrium of the population competition.
Conclusion and Outlook. Bacteria face frequent battles for

resources provided by environments where they inhabit. To
explore how bacteria play strategies to outperform others, we
have herein systematically evaluated different strategies by using
a two-species population dynamics system as a community
model. Our study showed that constant growth is a good
strategy that is always unbeatable (conferring a fitness of 0.5 or
higher). However, it may not be optimal. In the case when one
species grows susceptibly, its competitor can acquire a fitness
higher than that from the constant growth strategy by
employing an optimized version of the susceptibleness strategy.
The pursuit of fitness maximization is, however, associated with
potential loss if susceptibleness is not appropriately tuned.
Moreover, the risk of loss can be exemplified when both species
are capable of strategy adjustment. In contrast, persistence has
no risk of loss although it confers a smaller fitness. These results
hence illustrate an intrinsic risk-return trade-off and suggest a
guideline for strategic decision-making: a species shall take a
‘safe bet’ (constant growth) if risk minimization is mandatory
but adopt the optimal strategy (finely tuned susceptible
growth) when maximal gain is required.
The above findings are important for understanding bacterial

communities, such as biofilms and the human microbiome, by
revealing their establishment, compositional evolution, and
functionality, and may also benefit in deciphering the
development of infectious diseases where pathogenic bacteria
populate in patients. Moreover, the importance of appropriate
strategy selection further suggests that there may be a potential
solution for treating diseases and reducing the rise of antibiotic
resistance by employing commensal bacteria to outcompete
target pathogens.
With our bacterial community model, we have caught a

glimpse of the alluring world of cellular competition. In
addition to the exploitative competition illustrated here,
bacteria also combat through different fashions, such as contest
competitions that involve direct antagonistic interactions.20

Moreover, stochasticity and spatial heterogeneity of population
growth can considerably shape cellular competition and
corresponding outcomes as well.33,34,63,63−65

Beyond theoretical exploration, experimental validation of
our theory has also become possible due to rapid advances in
synthetic biology. For instance, DNA invertase systems66 that
confer digital DNA reconfiguration in cellular logic computa-
tion circuits67,68 can be potentially adopted for the
implementation of differential cellular responses to environ-
mental fluctuations. In addition, cutting-edge microfluidic
platforms have enabled dynamic control of cellular micro-
environments44 as well as long-term observations of bacterial
populations,69 which collectively offer an ideal testbed for
monitoring bacterial competition. It will thus be feasible and
highly interesting to test our theoretical predications using
synthetic bacterial populations in the future.
Through both computational and analytical studies, we have

uncovered good and optimal competition strategies, illustrated
the importance of strategic decision-making, and further
revealed the intrinsic association between risk and return,
shedding light on the complex but fascinating world of bacterial
competition. In addition, the knowledge acquired from these
findings will also facilitate the advance of synthetic biology as
the field moves from the engineering of gene circuits in single

species to microbial consortia for the innovation of
sophisticated biological functionality.

■ METHODS
Numerical Methods and Parameters. Numerical simu-

lations of this work were implemented based on the
mathematical framework, eq 1. ODE45 in Matlab was used
to solve the differential equations for various parameters. The
following parameter values were adopted throughout the paper
unless otherwise noted: N0 = 106, A0 = 1, C0 = 1, α0 = 0.1, γ =
0.02, and T = 200.
In Figure 2B, C, the initial condition A0 = C0 = 4 × 105 and

the GRF amplitude ΔA = 0.8 are used along with the default
parameters. The cellular environment was constant at the
beginning but was switched to be fluctuating at t = 1.0 × 103.
The mean fitness fc̅ is acquired by averaging over single periods
when the community is in steady oscillation. In Figure 2D, E,
the mean and variance of species C’s fitness as functions of the
period of environmental fluctuations were plotted for the cases
of k = 0.0001, 0.001, 0.01, and 0.1. Here, ΔA = 0.8 is used.
In Figure 3A, B, we calculated the maximum fitness fc̅ and its

corresponding fluctuating period for changing environments in
terms of the parameters k and ΔA. We considered square waves
Φ with periods in the range (0,2000]. In Figure 3C, D, we
plotted the mean fitness of species C from analytical calculation
and numerical simulation. ΔA = 0.3 and k = 0.003 for panel c,
and ΔA = 0.3 and k = 0.03 for panel d, corresponding to the
two dots O and M in Figure 3B respectively.
In Figure 4, we illustrated possible strategy optimizations

through the fine-tuning of the amplitudes, phases, and periods
of the GRFs. For the case of amplitude strategy (panels b and
c), we scanned the parameter regimes of ΔA ∈ [0,1] and ΔC ∈
[0,1] with TA = TC = 200. For the case of phase strategies
(panels d and e), we explored the parameter space of ΔA = ΔC
∈ [0,1] and Φ/2π ∈ [0,1] with TA = TC = 200. For the
frequency strategies (panels f and g), the stable period in the
steady state is the least common multiple of TA and TC;
therefore, the mean fitness is calculated by averaging over this
stable period. We explored the parameter space of TC/TA ⊆
(0,2) and ΔA = ΔC ∈ [0,1] with TA = 200. k = 0.001 was used
for all panels of Figure 4.
In Figure 5, we explored the potential loss during the pursuit

of maximal fitness when both species use an amplitude strategy
and are capable of sensing their competitor’s strategy and
adjusting their own. The community was modeled with ΔA =
0.9 and ΔC = 0 in the light green window, followed by a second
window (light blue) with ΔA = 0.9 and ΔC = 0.6, and a third
time window (light orange) with ΔA = 0.27 and ΔC = 0.6. The
corresponding mean fitness is fc̅ = 0.70, 0.81, and 0.29
respectively. T = 400.

Analytical Results. We employed an asymptotic approach
(expansion in Δ) for our model and obtained approximate
results for the mean fitness of both species in fluctuating
environments. The details of the calculations for the terms in
the expansion, the expected regime of validity, and the time
averaged fitness can all be found in SI sections 1−6.
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